Customer sentiment analysis is all about understanding what your customers feel about your brands, products, and services. Businesses must use customer sentiment to stay in tune with their customer experience and they have a lot to benefit from such customer data analysis.
The advantages of performing a customer sentiment analysis are many, as they provide businesses with a true picture of their customer experiences. Sentiment analysis helps in the following areas.
Real-time customer feedback analysis
Instead of conducting periodical surveys and focus groups, taking the time to analyze the data, and then taking decisions, the time frames dictate a much speedier approach.
With the AI-powered and machine learning technological help, companies are now able to conduct a giant poll of their customer opinions and analyze the real-time aggregate data of many people. This action enables management to learn quickly what their customer sentiment is and use such sentiment analysis to take actionable insights. There’s less of a need to rely on time-consuming data collection and analysis methods.
Such sentiment analysis support helps organizations form their future business model for their brands. But since all processes must move quicker now, the reception of customer data in real-time enables every company to act fast and respond to their customer sentiment and industry trends in a much faster manner.
Understanding customer narratives through their keywords analysis
Instead of asking customers survey questions, companies can now easily follow market trends as well as their customer sentiment via the use of keyword analysis.
Such an analysis enables companies to follow and track opinions and feedback as it stems from what their customers are thinking. Their narratives, be it positive or negative, regarding brands, add up all over the open web and can signal to every company how happy (or not) its customers are.
Sentiments may change rapidly, so constant tracking and monitoring of customer sentiment, through a keyword search and analysis can keep organizations closer to what their customers feel and need.
The ability to track feedback from all over the open web
Customers voice their opinions in different places and on a variety of platforms. The only way to track their aggregate voice about brands, products, or services, is to focus on each platform and gather their comments into one huge data pool.
Once all comments and conversations are gathered, AI and machine learning are able to structure the data and gain insights. When companies evaluate the structured customer sentiment analysis, they can improve their business model for their brands or design new ones.
Using keywords to measure sentiment
Customer feedback, whether positive, negative, or neutral, is voiced through various keywords.
And while each online platform is different, and its lingual style may not be similar to those on other platforms, it is the AI’s ability to conduct a keyword analysis that would place all words on an equal level.
A complaint email to the company’s website or a support ticket vs. a Twitter short message may be written and expressed differently. But when each message/comment is drawn into the analysis platform, they are processed on an even basis and with pre-determined parameters.
The end result is a customer sentiment analysis that treats all keywords similarly, from each and every platform, for the aggregate customer voice and opinion. In other words, natural language processing takes care of figuring out what customers feel and think.
The ability to compare periodically to see how sentiment changed over time
The customer sentiment analysis takes place all the time so that companies are able to compare their score and data from period to period. Sentiment analysis data can go up or down, but when the score changes, organizations can figure out what caused such changes and what customers had to say about each situation.
Unbiased information
Such customer sentiment analysis is built upon millions of customer mentions that do not respond to specific meditated questions, such as in a survey, but rather speak their minds freely.
Comments and conversations appear in social media posts or in review boards whenever customers wish to express their good or bad emotions towards brands. Sentiment analysis gathered from such comments is therefore unbiased, unfiltered, mostly free, and often relates to what a customer truly thinks.
Competitors comparison to better understand your market position
Performing a customer sentiment analysis is possible nowadays not only for the organization but also for its competition. It is basically the same type of customer sentiment analysis, that is what customers feel and think about brands, but regarding an organization’s rivals.
Following competitors’ brands can teach an organization a lot about what works and what doesn’t as well as about industry trends and future planning.
The ability to clear out spam and bots for true results
Taking out undesired data, such as spam and bots, leaves out the true consumer voice.
Opinion mining must rely on comments and conversations from real persons who truly voice their thoughts on brands, otherwise, the end results may be biased and wrong.
The ability to better understand mention peaks and what caused them
Sentiments often change, and they go through ups and downs. But now it is possible to figure out what caused an up peak or a down peak.
A customer sentiment analysis that follows peaks, through the feedback keyword analysis, is able to explain customer experience comments volumes. This way, organizations can better follow up on customer reactions to their own action, their rivals’ activities, or events and trends.
The disadvantages of analyzing your customer sentiment
Sentiment analysis can help organizations a lot, but they also must be aware of their disadvantages. Sentiment analysis tools are very useful, but a company’s management must also pay attention to problems that can’t be solved by such systems.
It’s only a number, so it isn’t enough
A sentiment analysis tool such as a brand reputation score can only offer one general indication of what customers think about products. But since it is only a general number, a business must dig deeper to figure out the entire customer sentiment analysis situation.
Companies need a broader brand analysis, which consists of many insights from customers. The list of insights may cover items such as the product, service experience, marketing strategies, marketing campaigns, how good the organization’s customer service agents or how to improve customer service in general. And customers opine and comment on all of these items, so tracking and analyzing their voices may give direct answers to these items.
Is it a true representation of your consumer’s voice?
There are those who claim that sentiment analysis is not based on representative demographics such as done in a poll and therefore does not show the actual customer sentiment. They also claim that in order to use customer sentiment, it is not advisable to rely only on those active customers who gave their feedback on social media or via customer support tickets.
However, performing a customer sentiment analysis does give organizations an exact description of actual customers in general and since such analysis covers countless mentions and comments, it still represents a wide and important opinion range.
Neutral comments do not count
Customer sentiment analysis helps organizations track and analyze the positive and negative conversations, but there are also those who comment but do not take sides. That chunk of comments does not support the organizations’ efforts to figure out what their customers think and feel, and is therefore viewed by some as wasted data.
Critics of the neutral comments collection claim that lots of AI and natural language processing (NLP) efforts become useless since such neutral comments do not contribute to the customer sentiment analysis process.
However, the focus is on positive vs. negative anyway, as the same takes place in any other poll. There are always those who stay neutral for whatever reason. There are those who are undecided, others are confused or simply not articulate enough. The collection of comments is always made up also from those who stay neutral.
Affogata’s tips for benefitting from customer sentiment analysis
Affogata supports customer-obsessed organizations which are looking to track and analyze their consumer feedback. Providing a sentiment analysis tool among its many other platform features, Affogata collects millions of customer reactions and conversations from all over the open web and then analyzes them within minutes so that organizations’ management can take data-driven actions regarding its brand, services, and products.
The customer experience and sentiments, as described on a variety of digital platforms such as review boards and social media, serve as the aggregate customer feedback and features in the overall customer sentiment analysis model.
There are several tips for how organizations can benefit from using Affogata for their customer sentiment analysis:
The customer sentiment score is just a temperature check of your brand reputation. Make sure to also deep-dive into the qualitative intel for the complete picture.
Compare sentiment over time to notice/predict brand and product changes.
Be alert to sentiment changes for quick action, especially in crisis-prone situations.
Use this analysis to increase retention and reduce churn.
Learn what customers are looking for by using keywords (topics, trends).